

Budapesti Műszaki és Gazdaságtudományi Egyetem Energetikai Gépek és Rendszerek Tanszék

A SMOG-1 műhold hőáramhálózatos modellezése

Készítette:

Welsz Ágnes XSX1AR

Konzulensek:

Józsa Viktor

Kovács Róbert

egyetemi tanársegéd

doktorandusz

2016.

Tartalomjegyzék

Jelö	olése	k jeg	yzékeiv
1.	Be	vezet	és1
1	.1.	Kül	detés1
1	.2.	Felé	építés2
	1.2	.1.	A napelemek jellemzői
2.	Kö	rülm	ények a világűrben4
2	.1.	Ter	mikus környezet4
	2.1	.1.	Külső hőforrások
	2.1	.2.	Belső hőforrások7
2	.2.	Hőá	itviteli folyamatok
	2.2	.1.	Hővezetés
	2.2	.2.	Konvekció
	2.2	.3.	Hősugárzás9
3.	Hő	áram	hálózatos modellezés11
3	.1.	Nég	gyoldalas kockamodell12
	3.1	.1.	Eredmények15
3	.2.	Hat	oldalas kockahéj modell
	3.2	.1.	Eredmények
3	.3.	Rés	zletes modell
	3.3	.1.	Hővezetés hatása az akkumulátor hőmérsékletére
	3.3	.2.	Eredmények
	3.3	.3.	Összevetés
	3.3	.4.	Validáció a végeselemes szimulációk alapján
4.	Ös	szefo	glalás
5.	То	vábbi	i feladatok
5	.1.	For	dulatszám hatása a kivehető teljesítményre

6.	Köszönetnyilvánítás	34
7.	Irodalomjegyzék	35
Füg	gelék	1
F	1. Peremfeltételek	1
	F1.1. Négyoldalas modell	1
	F.1.2. Hatoldalas modellek	1

Jelölések jegyzéke

α	hőátadási tényező $\left[\frac{W}{m^2 \cdot K}\right]$
α _a	abszorpciós tényező [-]
Α	hővezető keresztmetszet $[m^2]$
A _r	test felülete $[m^2]$
A_w	közeggel érintkező felület $[m^2]$
С	fajhő $\left[\frac{J}{kg \cdot K}\right]$
δ	hővezető test falvastagsága [m]
E _e	egy ernyő emissziós tényezője [-]
ε_i	az i. test emissziós tényezője [-]
<i>E</i> _{1,2}	kölcsönös emissziós tényező [-]
$E_{\lambda}^{(0)}$	fajlagos sugárzási teljesítmény-sűrűség fekete testre vonatkoztatva $\left[\frac{W}{m^2 \cdot \mu m}\right]$
$\varphi_{1,2}$	1-es test 2-esre vonatkoztatott térszögaránya (view factor) [-]
λ	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$
λ λ_r	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$ hullámhossz [μm]
λ λ_r λ_{max}	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$ hullámhossz [μm] maximális sugárzási intenzitáshoz tartozó hullámhossz [μm]
λ λ_r λ_{max} m	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$ hullámhossz [μm] maximális sugárzási intenzitáshoz tartozó hullámhossz [μm] tömeg [kg]
λ λ_r λ_{max} m n_e	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$ hullámhossz [μm] maximális sugárzási intenzitáshoz tartozó hullámhossz [μm] tömeg [kg] ernyők száma [-]
λ λ_r λ_{max} m n_e σ_0	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$ hullámhossz [μm] maximális sugárzási intenzitáshoz tartozó hullámhossz [μm] tömeg [kg] ernyők száma [-] Boltzmann-állandó, 5,6704 · 10 ⁻⁸ $\left[\frac{W}{m^2 \cdot K^4}\right]$
λ λ_r λ_{max} m n_e σ_0 R_{Σ}	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$ hullámhossz [μm] maximális sugárzási intenzitáshoz tartozó hullámhossz [μm] tömeg [kg] ernyők száma [-] Boltzmann-állandó, 5,6704 · 10 ⁻⁸ $\left[\frac{W}{m^2 \cdot K^4}\right]$ eredő hővezetési ellenállás $\left[\frac{K}{W}\right]$
λ λ_r λ_{max} m n_e σ_0 R_{Σ} T	hővezetési tényező $\left[\frac{W}{m\cdot K}\right]$ hullámhossz [μm] maximális sugárzási intenzitáshoz tartozó hullámhossz [μm] tömeg [kg] ernyők száma [-] Boltzmann-állandó, 5,6704 · 10 ⁻⁸ $\left[\frac{W}{m^2 \cdot K^4}\right]$ eredő hővezetési ellenállás $\left[\frac{K}{W}\right]$ hőmérséklet [K]
λ λ_r λ_{max} m n_e σ_0 R_{Σ} T τ	hővezetési tényező $\left[\frac{W}{m\cdot K}\right]$ hullámhossz [μ m] maximális sugárzási intenzitáshoz tartozó hullámhossz [μ m] tömeg [kg] ernyők száma [-] Boltzmann-állandó, 5,6704 · 10 ⁻⁸ $\left[\frac{W}{m^2\cdot K^4}\right]$ eredő hővezetési ellenállás $\left[\frac{K}{W}\right]$ hőmérséklet [K] idő [s]
λ λ_r λ_{max} m n_e σ_0 R_{Σ} T τ $\dot{q}^{(0)}$	hővezetési tényező $\left[\frac{W}{m \cdot K}\right]$ hullámhossz [μm] maximális sugárzási intenzitáshoz tartozó hullámhossz [μm] tömeg [kg] ernyők száma [-] Boltzmann-állandó, 5,6704 · 10 ⁻⁸ $\left[\frac{W}{m^2 \cdot K^4}\right]$ eredő hővezetési ellenállás $\left[\frac{K}{W}\right]$ hőmérséklet [K] idő [s] fekete testre vonatkoztatott sugárzási teljesítmény-sűrűség $\left[\frac{W}{m^2}\right]$
λ λ_r λ_{max} m n_e σ_0 R_{Σ} T τ $\dot{q}^{(0)}$ \dot{Q}	hővezetési tényező $\left[\frac{W}{m\cdot K}\right]$ hullámhossz $[\mu m]$ maximális sugárzási intenzitáshoz tartozó hullámhossz $[\mu m]$ tömeg $[kg]$ ernyők száma [-] Boltzmann-állandó, 5,6704 · 10 ⁻⁸ $\left[\frac{W}{m^{2}\cdot K^{4}}\right]$ eredő hővezetési ellenállás $\left[\frac{K}{W}\right]$ hőmérséklet $[K]$ idő [s] fekete testre vonatkoztatott sugárzási teljesítmény-sűrűség $\left[\frac{W}{m^{2}}\right]$ hőáram $[W]$

1. Bevezetés

A SMOG-1 egy PocketQube típusú műhold, amelyet a Budapesti Műszaki és Gazdaságtudományi Egyetemen villamosmérnök illetve gépészmérnök hallgatók és oktatók közösen fejlesztenek. A PocketQube típusú műholdat a Morehead State University és a Kentucky Space szabványosította azzal a céllal, hogy segítse az egyetemeket az űrtechnológiai kutatásokban [1]. A szabványos műhold geometriája egy 5 cm élhosszúságú kocka, melynek tömege nem haladhatja meg a 250 g-ot. Mivel jelenleg nagy probléma a Föld körül keringő, funkciójukat már ellátni nem képes műholdakból álló űrszemét a még működő műholdak veszélyeztetése miatt, a kis méret ezen probléma fokozódását is csökkenti. Továbbá, a konstrukció gyorsabban és olcsóbban fejleszthető a kisebb anyagszükséglet miatt, amely az oktatási célú eszközök esetében szintén fontos szempont. A jelenlegi műhold a tervek szerint egy 550-600 km-es, alacsony Föld körül pályát követ majd, így rövidebb ideig fog keringeni a bolygó körül, és feladata elvégzése után elég a légkörben, amellyel elkerülhető az űrszemét képződése.

A SMOG-1 elsődleges feladata az ember által keltett elektromágneses szennyezés, azaz elektroszmog mérése a digitális földfelszíni TV adók kibocsátási sávjában (430-860 MHz), amely mérésről korábban még nem publikáltak eredményeket, így ezt világelsőként tehetjük majd meg.

A fejlesztés alatt álló műhold hőtechnikai tervezésénél a legfőbb probléma a műhold kis méretéből származik, mivel a kis hőkapacitása miatt gyorsan lehűl az űrben az abszolút nulla kelvinfok körüli külső hőmérséklet miatt, amely veszélyezteti az üzemszerű működést. Bár a legtöbb áramköri elem -40°C és 80°C között képes működni, a lítium-ionos akkumulátor hőmérséklettartománya ennél jóval szűkebb, így ennek védelme alapos tervezést és sok vizsgálatot igényel. Ehhez különböző típusú modelleket alkalmazunk, hogy felderítsük a védendő alkatrészeket, majd ezekre konstrukciós megoldásokat adjunk. A csapat tagjaként a feladatom így egy hőáramhálózatos modell elkészítése Matlab Simulink környezetben, amellyel megvizsgálható az űrben jelentkező szélsőséges körülmények hatása.

1.1. Küldetés

A digitális földfelszíni TV adók célja, hogy az általuk kibocsátott sugárzás a lakossághoz jusson el. Ezt az elektromágneses sugárzást irányítottan a Föld felszíne felé célozva sugározzák, azonban azon része, amely nem hasznosul, a Föld görbülete következtében kijut az űrbe, így veszteség keletkezik. A méréseink tehát alkalmasak lesznek egy rádiófrekvenciás

1

szennyezettségi térkép előállítására, azaz, hogy a digitális földfelszíni TV adók sugárzásának mekkora része jut ki az űrbe. Ezen eredményeket felhasználva a műsorszóró adók fejlesztésekkel javíthatnak antennáik hatékonyságán, hogy így minél kevesebb veszteség keletkezzen [2].

A feladat elvégzéséhez szükséges legfontosabb elem egy folytonosan hangolható spektrumanalizátor, amely a műhold kommunikációs rendszerének részét képezi. A spektrumanalizátort Dudás Levente és a Mikrohullámú Távérzékelés Laboratórium munkatársai készítették [3][4]. Továbbá a műhold fedélzetén elhelyezésre kerül egy doziméter, melynek feladata a fedélzeti elektronikát érő teljes ionizációs dózis mérése [5].

1.2. Felépítés

A műhold szerkezeti felépítése kritikus pont a mérete következtében. Az elektronika helyigénye miatt teljesen ki kell használni a rendelkezésre álló 5 x 5 x 5 cm³-es térfogatot. A szerkezet 1,5 mm vastagságú üvegszállal erősített epoxy, azaz FR-4 anyagú lemezekből épül fel, ez az alkotója mind az oldalaknak, mind a belső lemezeknek. Mivel így az oldallapokra is elektronika kerül, a hőtechnikai tervezésnél a külső oldalak hőmérséklet ingadozásainak vizsgálata is szükségszerű. Az 1. ábrán látható a műhold felépítése, egy külső oldallap, és a rajta található napelem, a belső 5 db NYÁK lemez (villamosmérnöki terminológia szerint nyomtatott huzalozású lemez), illetve az ezeken található elektronika, az akkumulátor elhelyezkedése, az antennák illetve a vázszerkezetet összetartó két menetes szár.

1. ábra: A SMOG-1 műhold felépítése.

1.2.1. A napelemek jellemzői

A műholdak energiaigényének fedezésére különböző energiaforrások szolgálhatnak. Nagyobb méretű, illetve kapacitású energiatárolót alkalmazhatnak nagyméretű műholdas rendszerekben, ekkor ez a tároló a működés teljes időtartamára szolgáltathatja az energiát. Azonban estünkben ez a lehetőség nem adott, az egyetlen felhasználható forrás a Napból érkező sugárzás, így napelemes energiatermelést kell megvalósítani. A különböző napelemes technológiákkal a Napból beérkező sugárzás 10-30%-a elektromos energiává alakítható. Kis hatásfokúak az egyrétegű napelemek, így a magas hatásfok elérése érdekében többrétegű napelemeket kell alkalmazni. A technológia gyors fejlődésével mára a négyrétegű napelemekkel akár 46%-os hatásfok is mérhető [6]. A többrétegű cellák előnye abból adódik, hogy a különböző rétegek a fény különböző hullámhossztartományaiban nyelik el a sugárzást, így annak szélesebb spektrumát képesek hasznosítani. Az űrtechnológiában ezért a többrétegű napelemek terjedtek el széles körben. Az űrtechnológiában alkalmazott napelemek tervezésénél továbbá figyelembe kell venni, hogy a légkör szűrő hatásának következtében a földfelszínen a napsugárzás intenzitása eltér az űrbeli viszonyoktól. A SMOG-1 oldalaira így 40x40 mm²-es háromrétegű GaAs (gallium-arzenid) germánium alapú napelem cellák kerülnek, melyek 30%os hatásfokkal képesek a Napból érkező sugárzást elektromos energiává alakítani. A monokristályos illetve többrétegű napelem cellák előállítása miatti jellegzetes, sarokponti letörésből adódóan azonban az effektív felülete az egy oldalon található napelemeknek csupán $15,09 \text{ mm}^2$.

2. Körülmények a világűrben

A SMOG-1 egy alacsony földkörüli pályára (Low Earth Orbit, LEO) kerül majd, ez tervek szerint egy 550-600 km-es napszinkron pálya lesz, azaz keringése során egy adott pont felett a helyi idő szerint mindig ugyanakkor halad majd el. Ekkor a keringés periódusideje körülbelül 95 perc lesz, melynek 40%-ában a műhold a Föld árnyékában lesz.

2. ábra: Alacsony földkörüli pálya (LEO) [7][8].

Definíció szerint alacsony földkörüli pályáról beszélünk, ha a földfelszíntől maximum 2000 km magasságban található a műhold keringési pályája, ami általában 160-2000 km közötti Föld feletti magasságban található pályát jelent. Ahogy a 2-es ábrán látható, ebbe a tartományba esik a napszinkron pálya, 600-800 km közötti magasság esetén [9].

2.1. Termikus környezet

A hőmérséklet az űrben az abszolút nulla kelvin fokhoz közelít, értéke csupán a kozmikus háttérsugárzás hatása miatt 2,7 K [10]. Ezért a műhold oldallapjai folyamatosan sugároznak az űr felé, ami nagymennyiségű hőveszteséggel jár, és okozza a műhold gyors lehűlését árnyékban. Mivel abszolút nulla fok közeli hőmérsékletben és vákuumban fog üzemelni a műhold, ez más problémát is felvet. A vákuum következtében a nagyobb teljesítményt disszipáló elektronikai elemek konvekcióval nem képesek hűlni, a képződő hő csak sugárzás és hővezetés formájában tud távozni. Egyes elemek esetében, mint például az energiaellátó rendszer, erre nagy figyelmet kell fordítani, hiszen a fogyasztástól függően nagy energia áramolhat keresztül rajtuk, így túlmelegedhetnek [5]. Azok az elemek viszont, amelyeken nem

szabadul fel kellő mennyiségű hő, az üzemi minimális hőmérsékletük alá hűlhetnek, amely veszélyeztetheti az elektronikai alkatrészek élettartamát. Így a tervezés során fontos, hogyan használjuk fel a rendelkezésünkre álló hőforrásokat.

A műholdat különböző hőforrások táplálják, melyek lehetnek külső vagy belső eredetűek. Külső forrás a Napból érkező hősugárzás, a Föld felszínéről visszaverődő napsugárzás, azaz Albedo sugárzás, illetve a Föld saját hősugárzása. A Föld fekete testként sugároz, körülbelül 255-287 K effektív hőmérsékleten [11], így a Wien-féle eltolódási törvényből kiindulva a bolygó saját sugárzása az infravörös tartományba esik. A belső hő az elektronika nem ideális működéséből adódó disszipált hő, vagyis a Joule-hő.

2.1.1. Külső hőforrások

3. ábra: A műholdat érő külső eredetű hőforrások [12].

A Napból érkező sugárzás az évszakok függvényében változik, téli időszakban a maximális, nyáron pedig a minimális érték körül tapasztalható [13]. A műhold keringési periódusa a napszinkron pályából adódóan 95 perc körül várható, melynek 64%-ában éri a napsugárzás a műholdat, így ez a sugárzás egy négyszögjellel közelíthető, amely a 4. ábrán látható.

4. ábra: Napsugárzás egy keringési periódusban.

A Napból a földfelszínre érkező sugárzás egy része elnyelődik, egy része pedig direkt módon, vagy szórtan visszaverődik. Ezt a helyi felszíni adottságok, illetve a felhőtakarás mértéke határozza meg leginkább. Az elnyelt, vagyis abszorbeált sugárzást később újra kisugározza a föld, melynek sugárzási spektruma az infravörös tartományba esik már, az égitest saját hőmérsékletének megfelelően. A direkt visszavert sugárzás a beérkezés szögével megegyezően verődik vissza, így mivel az űrben ennek elhanyagolható részaránya jutna a műholdakig, ezzel általában nem foglalkoznak. Tehát az Albedo sugárzás vizsgálatakor a Föld, mint diffúz sugárzó felület jelenik meg [14].

5. ábra: Az Albedo és az infra sugárzás mértéke egy keringési periódusra [13].

A Földről visszavert Albedo sugárzást általában a szoláris fluxus százalékában szokás megadni, hiszen ennek nagysága határozza meg az értékét. Az Albedo sugárzás a Földre beérkező sugárzásnak különböző arányában verődik vissza, az időjárási viszonyok illetve a földrajzi sajátosságok függvényében. Jelentős eltéréseket lehet tapasztalni tiszta, illetve felhős égbolt esetén, mivel utóbbi esetben nagyarányú a visszaverődés, illetve szárazföldek vagy tengerek, óceánok, illetve erdők felett, utóbbiaknál csekély a visszavert sugárzás aránya. Az Albedo sugárzás éves átlagos értékére azonban egy jó közelítés a 30% [14].Ezeket az értékeket az 1. táblázat tartalmazza. Az 5. ábrán is látható, hogy míg az Albedo sugárzás csak abban az intervallumban van jelen, amikor a műhold a napos oldalon van, addig a bolygó saját sugárzása az árnyékos időszakban is jelen van, és csak kis mértékben csökken az értéke.

	Középérték	Minimum érték	Maximum érték
Napsugárzás	1367 W/m ²	1322 W/m^2	1414 W/m^2
Albedo sugárzás	30%	5-10%	40-80%
Infra sugárzás	239 W/m ²	212 W/m^2	263 W/m ²

^{1.} táblázat: Külső hőforrások értékei [13][14].

2.1.2. Belső hőforrások

A műhold belsejében működése során hő szabadul fel a nem ideális elektronikán. Azonban a legtöbb hőveszteség nem homogén módon oszlik meg a térfogaton belül, hanem egy-egy funkciót teljesítő elemen koncentrálódik, mint például a kommunikációs alrendszerben lévő rádiós chipen (integrált áramkörön), amely a műholdon belül a legnagyobb teljesítményt disszipálja, különösen adás közben. A pályából adódóan a napelemek a keringési periódusnak 60%-ában képesek energiát termelni, ebben az időszakban az oldalanként 40x40 mm² felületű napelemek, melyek valós felülete a letörés miatt, amely monokristályos illetve többrétegű napelemeknél jellemző, 15,09 mm², 600 mW elektromos energiát szolgálatnak, amely az egész periódusra átlagosan 360 mW-ot jelent. Becslés alapján egy periódusra 25%-os adási és 75%-os vételi tényezővel számítva az ehhez szükséges átlagteljesítmény 160 mW lesz [2]. A megtermelt energiának egy jelentős része így veszteségként, hő formájában a műhold hőmérlegét befolyásolja. Mivel a kis hely miatt a legtöbb elektronika elhelyezése adott volt, így a forrópontok elhelyezkedésének kisebb módosításával igyekeztük az akkumulátor fűtéssel nem fog rendelkezni a műhold.

2.2. Hőátviteli folyamatok

A hő terjedésének mennyiségi leírásához három elkülöníthető elemi folyamat típust szokás megkülönböztetni, a hővezetést, a konvekciót, illetve a hősugárzást. Ezen folyamatok részletezése a következő pontok [15], [16] alapján lettek összefoglalva, melyekben az egyenleteket leíró változók a dolgozat elején, a jelölések jegyzékében találhatóak.

2.2.1. Hővezetés

Szilárd anyagban, cseppfolyós vagy légnemű közegben, melynek részei egymáshoz képest makroszkópikusan nyugalomban vannak, a hő különböző közepes sebességű (energiájú) részecskék révén, vagy a részecskék között ható erők közvetítésével molekuláról molekulára terjed, illetve fémeknél a szabad elektronok diffúziója révén áramlik. A folyamatot esetünkben jól közelíti a Fourier-féle hővezetési egyenlet:

$$\dot{Q} = -\lambda \cdot A \cdot \frac{dT}{dx}.$$
(2.1)

2.2.2. Konvekció

Áramló közeg és az azt határoló felület közötti hőterjedésben a közegen belüli hőveszteségen kívül az is szerepet játszik, hogy a különböző hőmérsékletű részek egymáshoz képest makroszkópikusan elmozdulnak, és ezzel energiájukat is magukkal szállítják. Konvekció esetén a részecskék véletlenszerű mozgására a közeg makroszkópikus mozgása szuperponálódik, és az energiatranszportban mindkettő szerepet játszik. Mind a sebesség, mind a hőmérséklet a faltól távolodva monoton változik, de jelentős változás csak a fal közelében észlelhető. Azt a fal melletti közegréteget, amelyben a hőmérséklet változása jelentős, termikus határrétegnek nevezzük. A határoló felület által időegységenként leadott hőt a Newton-féle lehűlési törvény alapján számítjuk:

$$\dot{Q} = \alpha \cdot A_w \cdot \left(T_w - T_{k\ddot{o}zeg} \right). \tag{2.2}$$

Az űrben uralkodó körülmények következtében a hővezetés az oldallemezek között elhanyagolhatóan kicsi, mivel az oldalak illesztése nem pontos, így a lemezek között konvekció által történhetne a hőátvitel. Erősen ritkított gázok esetén gyakorlatilag zérus a hőátadási tényező, nagyságrendileg $10^{-10} \frac{W}{m^2 \cdot K}$ [17].

2.2.3. Hősugárzás

Az energia térbeli terjedésének elektromágneses hullámok formájában megvalósuló folyamata, melyhez nem szükséges közvetítő közeg. Minden test bocsát ki energiát elektromágneses sugárzás formájában. A fekete test a legjobb sugárzó illetve elnyelő. A valóságban azonban általában színes testekről beszélhetünk, amelyek a hullámhossz függvényében nem egyenletesen nyelik el illetve bocsátják ki a rájuk érkező sugárzást. Elnyelt, vagy abszorbeált sugárzás esetén a hőmennyiség számítása:

$$\dot{Q}_{absz} = \alpha_a \cdot \sigma \cdot A_r \cdot \left(T_{test}^4 - T_{k\ddot{o}rny}^4\right).$$
(2.3)

Míg kibocsátott, vagy emittált esetben:

$$\dot{Q}_e = \varepsilon \cdot \sigma \cdot A_r \cdot \left(T_{test}^4 - T_{k\"{o}rny}^4 \right). \tag{2.4}$$

Összetett geometriák esetén a sugárzásos hőáram kiszámítására az alábbi egyenletet alkalmazzuk:

$$\dot{Q} = \sigma_0 \cdot \varepsilon_1 \cdot \varepsilon_2 \cdot \varphi_{1,2} \cdot A_{r,1} \cdot (T_1^4 - T_2^4).$$
(2.5)

A hősugárzás tekintetében három alaptörvényt kell megemlíteni.

A Planck törvény kimondja, hogy a fekete test diffúz, azaz irányfüggetlen sugárzó, és a kibocsátott energia nagymértékben függ a test abszolút hőmérsékletétől. A teljes féltérbe kibocsátott sugárzás intenzitását a hőmérséklet és a hullámhossz függvényében a 6. ábra mutatja.

6. ábra: Abszolút fekete test fajlagos sugárzási teljesítménysűrűsége a hullámhossz és a hőmérséklet függvényében [18].

A Wien-féle eltolódási törvény kimondja, hogy a fekete test a maximális intenzitású sugárzását növekvő hőmérséklet mellett egyre rövidebb hullámhosszon bocsátja ki. A (2.6) egyenlet megadja, hogy az 6. ábrán látható görbék a maximum helyüket hol veszik fel.

$$\lambda_{max} \cdot T = 2897,8 \,\mu m \cdot K. \tag{2.6}$$

2.2.3.1. Stefan-Boltzmann törvény

Adott hőmérsékletű fekete test teljes spektrumra vonatkoztatott felületi teljesítménysűrűségét adja meg:

$$\dot{q}^{(0)}(T) = \int_0^\infty E_{\lambda_r}^{(0)}(\lambda_r, T) d\lambda_r = \sigma_0 \cdot T^4, \qquad (2.7)$$

ahol $\sigma_0 = 5,6704 \cdot 10^{-8} \frac{W}{m^2 \cdot K^4}$ a Boltzmann-állandó.

Ezek a hőátviteli folyamatok általában együttesen lépnek fel, ritkán jelennek meg önmagukban. A továbbiakban ezen hőátviteli folyamatok kombinációiból építettem fel a különböző modelleket, melyek egyre több elemet tartalmazva bonyolódtak, hogy így közelítsem a valós elrendezést. Ezen modellekben különböző szélsőséges, illetve átlagos körülményeket vizsgáltam. A modellek validálásához továbbá szükséges volt összehasonlítani eredményeimet a végeselemes módszerből kapott eredményekkel, a 3.3.4. fejezetben ezt mutatom be.

3. Hőáramhálózatos modellezés

A hőáramhálózatos modellezés manapság háttérbe szorult a végeselemes szimulációkhoz képest, mivel felépítése időigényes, bonyolult egyenletrendszerek alkotják a modellt. Előnye azonban a végeselemes szimulációkkal szemben, hogy egy jól elkészített modellben a változtatások követése kevésbé időigényes, a részfolyamatok pontosabban monitorozhatóak, így egy kis változtatás hatását a végeselemes modellel ellentétben gyorsabban kimutathatjuk. Ezért a SMOG-1 tervező csapatában párhuzamosan numerikus és hőáramhálós modellek készülnek a minél pontosabb és ellenőrizhetőbb eredmények érdekében. A hőáramhálózatos modell, hasonlóan a végeselemes modellekhez, szintén bővíthető a kívánt bonyolultsági szintig, mellyel az eredmények pontossága növelhető. A hőáramhálózatos modellépítés elve, hogy a komplex hőáramlásokat elemi hőtani jelenségekre bontjuk, amely az űrbeli körülmények miatt csak a hővezetésre illetve hősugárzásra korlátozódik, és ezek összegzése mutatja a teljes folyamatot. A hőáramhálózatos modelleket MATLAB Simulinkben készítettem. Kezdetben a modellt felépítő blokkok vezetékkel kapcsolódtak egymáshoz, azonban az egyre részletesebb modellezés szükségessé tette a paraméterezést, ezekről láthatunk részleteket az alábbi, 7. ábrán.

7. ábra: Kezdeti illetve új felépítés.

A modell építéséhez az ábrán látható módon egyéni blokkokat hoztam létre, ezek a Matlab Function blokkok, melyekben Matlab szkripttel definiáltam az egyes hőáramokat, ezek a modell alapvető építőelemei. Parametrizálás után a From illetve GoTo blokkpárt alkalmaztam. A GoTo blokkal egy új változót lehet létrehozni, amely ezután bárhol behívható a From blokk használatával. A Function blokkokhoz ezek a From blokkok csatlakoznak a bemeneti oldalon, illetve GoTo blokkok a kimeneti oldalon. Az eredmények vizsgálatához a Scope vizuálisan, diagramban is mutatta az eredményeket, azonban az adatok feldolgozásához a To Workspace blokkot alkalmaztam, így az adatsorok kimenthetőek MS Excelben. A modellek teljes felépítését a következő pontokban (3.1, 3.2, illetve 3.3), az egyes modellek leírásakor részletezem. A szimulációk futtatása Dormand-Prince módszerrel történt, amely egy változó lépésközű Runge-Kutta típusú explicit metódus, melyet közönséges differenciálegyenletek megoldására alkalmaznak. Lényege, hogy negyed- és ötödrendű Runge-Kutta-módszerrel számol, majd úgy választ lépésközt, hogy a hiba a negyedrendű módszer hibájával egyezzen meg [19].

A tervezés során az egyszerű modellektől haladtam az egyre részletesebb konstrukciók felé. Kezdetben rendelkezésemre állt egy korábban készített két tárolós modell, amelyben az oldallapok összessége illetve az akkumulátor alkotta a rendszert. Ebben az elrendezésben az oldallapot a Napból érkező sugárzás melegíti, amely az akkumulátor felé hővezetéssel illetve hősugárzással juttatja tovább a hőt. Ezen modell továbbgondolásával folytattam a munkát, egyre jobban közelítve a valós elrendezést.

A követelményeket meg kell határozni a fő struktúrára, a napelemekre, az elektronikára, és természetesen az akkumulátorra. Az alábbi táblázat mutatja az üzemi hőmérséklettartományokat, amelyen belül tartva az egyes elemek még működőképesek.

	Minimum [°C]	Maximum [°C]
Akkumulátor	0	40
Normál ipari elektronika	-40	85
Nagyobb tűrésű elektronika	-40	125

2. táblázat: Az egyes elemek működési hőmérséklettartományai.

Az egyetem első műholdjának, a Masat-1-nek mért adatai alapján a pályára állítást megelőzően a hőmérséklete 0 °C fölötti érték volt. A SMOG-1 indításakor is hasonló hőmérséklet értéket becslünk, mielőtt az Unisat-7 pályára állítaná, így a következőkben bemutatott szimulációkban minden esetben 0 °C-ról indul a hőmérséklet.

3.1. Négyoldalas kockamodell

Az első modell, amelyet elkészítettem, egy öttárolós modell volt, mely négy oldallapból, és egy középen "lebegő" akkumulátorból állt. Az oldallapok 50x50 mm² NYÁK lapok, a Li-ionos akkumulátor pedig 27,5x35,7x7 mm³ méretű. Ezzel a modellel többféle elrendezést és peremfeltételeket vizsgáltam meg. A legelső elrendezésben csak hősugárzás lép fel az oldalak illetve az oldalak és az akkumulátor között. Ezt követően a modell bővült a hővezetés figyelembe vételével, hiszen nem elhanyagolható mértékű annak hatása az akkumulátor és az oldallapok között. Az elrendezés egyszerűsége végett az akkumulátor szimmetrikusan helyezkedik el a négy oldal között, mely a 8. ábrán látható.

8. ábra: 4 oldalas kockamodell elrendezése.

A hőáramhálózat felépítéséhez a következő egyenletből indultam ki:

$$\frac{dT_{test}}{d\tau} \cdot c \cdot m + \sum_{i=1}^{n} \left(\sigma_0 \cdot A_w \cdot \varepsilon_{test,i} \cdot \varphi_{test,i} \cdot (T_{test}^4 - T_i^4) + \frac{\delta_i}{\lambda_i} \cdot A \cdot (T_{test} - T_i) \right) = \sum_{j=1}^{m} \dot{Q}_j.$$
(3.1)

Ez valójában a hőmérsékletváltozást leíró differenciál-egyenlet, amely kimondja, hogy az összes beérkező hőteljesítmény hővezetésre és hősugárzásra, valamint a test belső energiájának megváltozására fordítódik. Így például az első modell megalkotásakor az előző egyenlet átrendezésével a 3-as számú oldalra a következő egyenletet írtam fel:

$$c_3 \cdot m_3 \cdot \frac{dT_3}{d\tau} = \dot{Q}_{N,3} + \dot{Q}_{Al,3} + \dot{Q}_{IR,3} - \dot{Q}_{\tilde{u}r,3} + \dot{Q}_{s,1,3} + \dot{Q}_{s,2,3} - \dot{Q}_{s,3,4} - \dot{Q}_{s,3,a} - \dot{Q}_{\nu,3,a}.$$
 (3.2)
abol:

 $\dot{Q}_{N,3}$ –Napsugárzásból érkező hőteljesítmény [W]

 $\dot{Q}_{Al,3}$ – Albedo sugárzásból érkező hőteljesítmény [W]

 $\dot{Q}_{IR,3}$ –Föld infravörös sugárzásából érkező hőteljesítmény [W]

 $\dot{Q}_{\text{úr},3}$ – Űr felé sugárzott hőteljesítmény [W],

illetve *s* a sugárzásos, *v* a vezetésből származó hőátviteli folyamatot jelenti az indexben jelölt oldalak és/vagy az akkumulátor között.

A (3.1) és (3.2) egyenletek alkotják a Matlab Simulink modellt, amelyben az egyenletek tagjai egy-egy Matlab Function blokkal vannak leképezve, majd a leíró differenciálegyenlet megoldására egy Integrator blokkot alkalmaztam. A Matlab Function blokkokban felírt egyenletekhez szükséges paraméterek meghatározása volt a következő lépés. Először a

beérkező sugárzást vizsgáltam meg, mivel a műhold forgása következtében nem állandó a besugárzás mértéke az oldalakon. A sugarak párhuzamos beérkezése, illetve a műhold kocka geometriája miatt a beérkező sugárzás nagysága arányos az oldallap normálvektorának és a napsugarak irányvektorának skalárszorzatával. Így a beérkező sugárzás nagysága tehát ezen skalárszorzat, a sugárzásintenzitás és a felület nagyságának szorzataként írható fel.

A kocka geometria miatt maximálisan 3 oldalt tud megvilágítani a párhuzamosan érkező sugárzás, azonban az első elrendezésben, a négyoldalas modell esetén ez még maximálisan két szomszédos oldallap lehet. A szimulációban a megvilágítás úgy jelenik meg, hogy egy olyan szinusz hullámot állítottam elő, amelynek csak a pozitív értékét vettem figyelembe, illetve hasonlóan még egyet, amely félperiódus késleltetéssel követi. Az első szinusz hullám amplitúdója megegyezik a Napból érkező sugárzás nagyságával, míg a másik szinusz hullám amplitúdó az Albedo sugárzás illetve a bolygó saját sugárzásának összege. A 9. ábrán a maximálisan Napból érkező sugárzáshoz képest mért relatív értékeket láthatjuk rendre az első, második, harmadik és negyedik oldalon. Hasonlóan adható meg az Albedo illetve infra sugárzás időfüggvénye is, a korábban említett félperiódus eltolás mellett.

9. ábra: A forgást leképző szinusz időfüggvények, a beérkező Napsugárzás relatív értéke a maximumhoz képest.

Megfigyelhető az ábrán az is, hogy mivel kocka geometriát vizsgálunk, így a szemközti oldalakat nem érheti egyszerre ugyanaz az irányú sugárzás, így amikor az első oldalra érkezik napsugárzás, abban az esetben a harmadik oldal árnyékban van.

A következő feladatom az egyenletek felírásához szükséges további konstansok meghatározása volt. Ennek legnagyobb része anyagjellemző, azonban a geometriából adódó konstansok, mint a hősugárzásban megjelenő térszög arány, illetve a hővezetési paraméterek meghatározásához további vizsgálatok voltak szükségesek. Ehhez egy MATLAB bővítményt [20] alkalmaztam, amellyel síkfelületek között, háromdimenziós koordinátáik megadásával kiszámítható a szögtényező értéke. A bővítmény validálása azonban elengedhetetlen volt, így

ismert elrendezések [18] szögtényezőjének felírásával ellenőriztem a program helyességét, alkalmazására csak ezután került sor.

Az akkumulátor és az oldallapok között a hővezetés paramétereit becsléssel határoztam meg a kezdeti modellek esetén, amely az egyre részletesebb modellek felé haladva már pontosabban megadható. A hővezetéshez egy FR-4-es belső NYÁK lap paramétereit használtam fel, amely geometriáját az alábbi, 10. ábrán láthatjuk.

10. ábra: A belső NYÁK lap felépítése [5].

Ez alapján az akkumulátortól egy oldalfalig a hővezetést három elemi hőellenállásra bontottam fel. A saroknál található befogásokra, illetve a fennmaradó, középső területre. A befogások párhuzamos hőellenállások, amellyel sorba van kapcsolva a középső rész ellenállása. Az eredő hővezetési ellenállást tehát az alábbi képlettel határoztam meg:

$$R_{\Sigma} = \frac{\delta_{k\ddot{o}z\acute{e}ps\ddot{o}}}{\lambda_{k\ddot{o}z\acute{e}ps\ddot{o}}\cdot A_{k\ddot{o}z\acute{e}ps\ddot{o}}} + \frac{1}{\frac{1}{\frac{\delta_{befog\acute{a}s1}}{\lambda_{befog\acute{a}s1}\cdot A_{befog\acute{a}s1}} + \frac{\delta_{befog\acute{a}s2}}{\lambda_{befog\acute{a}s2}\cdot A_{befog\acute{a}s2}}}.$$
(3.3)

3.1.1. Eredmények

Az eredményeket a pályára állítás kezdetekor fellépő tranziens állapotok lecsengése után mutatom be, tehát amikor beáll a műhold hőmérséklete. A szimulációkat 100 periódusra futtattam, és ez alapján, ha a kapott átlagos hőmérsékletértékekhez képest a hőmérséklet eltérése kisebb, mint 0,5 °C, akkor azt úgy tekintettem, hogy beállt az egyensúly. Ez a 3. periódusra már teljesült, így ettől a ponttól ábrázolom a hőmérsékleteket is. A 11. ábrán az akkumulátor, illetve egy tetszőleges oldallap hőmérsékletének időbeli lefolyása látható hővezetés nélküli esetben, a sugárzás átlagos értékeivel számolva, amelynek peremfeltételei az F.1.1. függelékben találhatóak. Az oldalakat ebben az esetben még ugyanazok a hatások érik, így a forgásból adódó eltolást leszámítva ugyanazt az eredményt kapjuk bármely oldal esetén.

A futtatást több keringési periódusra végeztem, így a bemutatott eredmények már a beállást követően mutatják a hőmérséklet-lefutásokat.

11. ábra: Csillapítás hatása.

Jól látszik a csillapítás hatása, amely a réteges szerkezetből adódik, tehát, hogy az oldal jelentős hőmérsékletváltozásai ellenére az akkumulátor hőmérséklete csak szűk intervallumon belül változik. Ez a hővezetés elhanyagolásának következtében ilyen jelentős. Az oldallap hőmérsékletének növekedésekor a műhold forgásának hatása mutatkozik meg a diagramon. A napon töltött idő alatt az oldallapot a forgás következtében szinuszos periodicitással érik a napsugarak illetve a visszavert és a Föld saját sugárzása, ezért nem lesz monoton a felszálló ág hőmérsékletnövekedése.

A következő lépésben a hővezetést már figyelembe vettem az akkumulátor és az összes oldal között, hiszen valós esetben azon a NYÁK lapon keresztül, amelyen az akkumulátor rögzítve van, mind a négy oldallal hővezetési kapcsolatban áll az akkumulátor, ez látható a 12. ábrán.

12. ábra: Hőmérséklet lefutások az akkumulátor és az oldallap közötti hővezetés figyelembe vételével (ÁTLAG).

Ebben az esetben is jelen van a csillapítás a külső oldal és az akkumulátor között, azonban az akkumulátor hőmérséklet-ingadozása sokkal nagyobb mértékű, mint hővezetés nélküli esetben. Így kijelenthetjük, hogy a modell részletezése során nagy hangsúlyt kell fektetni a hővezetés paramétereire, illetve az akkumulátor rögzítésének tervezésekor is figyelembe kell venni az így adódó hőátvitelt. A 3. táblázatban láthatóak a teljes szimuláció alapján kapott átlagos, minimális, illetve maximális értékei.

	Akku	1-es oldal	2-es oldal	3-as oldal	4-es oldal
T _{min} [K]	272,8	257,0	258,9	258,4	258,6
<i>T_{max}</i> [K]	289,8	296,3	297,3	296,8	297,7
T _{közép} [K]	279,2	280,9	281,0	280,6	281,3

^{3.} táblázat: Jellemző hőmérséklet értékek.

Ezután szélsőséges eseteket vizsgáltam meg, azaz a legrosszabb és a legjobb eseteket, így elmondható, hogy a kapott eredmények közötti tartományban lesz a valóságos eset is.

3.1.1.1. Legrosszabb és legjobb eset

A legkevésbé kedvező, tehát leghidegebb körülményeket ugyanúgy, mint a legmelegebb esetet is fontos megvizsgálni, hiszen elképzelhető ilyen felállás, így a szélsőséges eredmények alapján tervezhetjük az akkumulátor védelmét.

A legkedvezőtlenebb esetben (MIN) a beérkező hőteljesítmények minimumával számoltam, amely értékeit az F.1.1. függelék tartalmazza. Ezek a legkisebb felületen érő megvilágítással érik a műholdat, ekkor pontosan egy oldalt lát a Nap. Továbbá a műhold forgását elhanyagoltam, így megvizsgálható az elérhető legnagyobb kialakult

hőmérsékletkülönbség is az egyes elemek között. A leghidegebb, legszélsőségesebb esetben láthatjuk, hogy az az oldal, amely a Napból érkező sugárzást kapja (1-es oldal), nagy, 70°C-os hőmérsékletingadozást mutat a napon illetve árnyékban töltött idő miatt. A vele szemben lévő oldal ennél jelentősen kisebb hőforrásból kap energiát, csak az Albedo illetve a bolygó saját sugárzásából származik az őt melegítő külső sugárzás. A leghidegebb esetben azt is szükséges megvizsgálni, hogy milyen minimális értékig csökken az egyes elemek hőmérséklete, ha a kidobást követően éppen a megvilágítatlan oldalon kezdi meg a keringését a műhold, azaz a 4. ábrán látható négyszögjel éppen a 0 értékről indul, és a periódusidő 36%-ánál ugrik 1-re az értéke. Itt a szimuláció eredményeit eltérően a többi esethez képest, már a kezdeti időpillanattól ábrázoltam. Az 1-es oldallap hőmérséklete jelentősen lecsökken a tranziens intervallumban, viszont az akkumulátor minimális hőmérséklete nem tér el lényegesen a beállás után tapasztalt minimum értéktől.

13. ábra: Legrosszabb eset vizsgálata.

A legmelegebb esetben a beérkező sugárzások maximumával számoltam, illetve itt az adásból, és vételből származó disszipált hő további hőforrásként megjelent. A legmelegebb esetre vizsgáltam szélsőséges, forgás nélküli (MAX1), illetve forgó modellt (MAX2) is. A következő ábrán a különböző körülmények esetén végzett szimulációkból kapott akkumulátor hőmérsékleteket mutatom be egy közös diagramban, melyekre az alkalmazott peremfeltételek az F.1.1. függelékben találhatóak.

14. ábra: Különböző forgatókönyvekből kapott akku hőmérsékletek.

Az átlagértékekkel számított esetben az akkumulátor hőmérséklete lemegy 0°C alá, a leghidegebb esetben pedig szinte kizárólag negatív értékeket vesz fel az akkumulátor hőmérséklete, így ennek megoldására további vizsgálatokat végeztem.

3.1.1.2. Sugárzásvédő ernyőzés hatása

Megoldásként szolgálhat a műhold belsejében a hősugárzásból eredő hőveszteség csökkentése. Ennek megvalósításához sugárzásvédő ernyőket alkalmazhatunk, melyek emissziós tényezője kicsi, így az eredő emissziós tényező értékét le tudjuk csökkenteni. Változása az ernyők számának függvényében a következő:

$$\varepsilon_{1,2} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1 + \frac{2 \cdot n}{\varepsilon_e} - n}$$
(3.4)

Alumínium fóliára az emissziós tényező értéke: $\varepsilon_e = 0,05$ [21].

15. ábra: Emissziós tényező változása.

Az ernyők rétegzésével az eredő emissziós tényezőt jelentősen tudjuk csökkenteni kezdetben, azonban a kezdeti gyors változás után egy 0-hoz tartó függvény szerint már egyre kisebb mértékben csökken tovább az ε értéke, így csupán néhány réteg alkalmazása ajánlott. Az átlagos beérkező sugárzásokkal számolva az eredmény a 16. ábrán látható.

16. ábra: Ernyőzés hatása.

Itt jól látszik, hogy hogy az első ernyő az ernyőzés nélküli esethez képest megemeli az akkumulátor minimum hőmérsékletét. A második ernyő azonban már kisebb változást eredményez.

3.2. Hatoldalas kockahéj modell

A következő modellben már egy teljes kockahéj, azaz hat oldal veszi körül a középen található akkumulátort. Ez a négyoldalas kockamodell bővítéséből született. A korábbi modellhez hasonlóan itt is először a beérkező hősugárzást vizsgáltam meg. Ez függ a szögsebesség nagyságától illetve tengelyétől is. A szögsebesség nagysága azért játszik szerepet, mert a napelemek maximális elektromos energia termelésére használt rendszer növekvő szögsebesség mellett kevésbé tudja optimalizálni a napelem munkapontját, így az energiatermelés hatásfoka csökken, tehát több lesz a hőként hasznosuló sugárzás. Ennek részletes leírása az 5.1. fejezetben található. A szögsebesség iránya pedig magát a besugárzott felület nagyságát befolyásolja, amely egyaránt fontos az energiatermelés illetve a hőegyensúly esetében is. A legkedvezőtlenebb esetben a párhuzamos sugárnyalábok pontosan egy oldalt érnek forgásmentes helyzetben, forgás mellett pedig maximum kettőt. A legtöbb felület, amelyet a sugarak érhetnek, az egyszerre három oldal, melyekre a napsugarak a térátlóval párhuzamosan érkeznek, és forgás esetén akkor lesz átlagosan a legnagyobb ért felület, ha a térátló tengelye körül forog a műhold. Az átlagos besugárzott felület ezen értékek között található, ennek egy átlagos értékét határoztam meg a dőlésszög függvényében.

17. ábra: Gömbi koordináta-rendszer [22].

Az előző modellben alkalmazott szinusz függvénnyel definiálom jelen esetben is a műhold forgását. A gömbi koordináta-rendszerben ez Θ (t) függvénnyel írható fel. A dőlésszög Φ , ezen értéket változtatva 0-90°-ig meg lehet vizsgálni, hogy egy periódusban mekkora a besugárzott felület nagysága.

18. ábra: A sütött lapok összfelülete a dőlésszög és a forgás függvényében.

A vizsgálat eredménye azt mutatja, hogy az átlagos besugárzott felületnagyság 1,44-szerese a kocka egy lapjának. Ez alapján a továbbiakban azzal a dőlésszöggel számoltam, amely mellett egy periódus alatt az átlagos besugárzott felület is az oldallap 1,44-szerese, ez Φ =25°-nál lesz igaz.

3.2.1. Eredmények

A 19. ábrán a hőforrások középértékével számolt szimuláció eredménye látható. Az alkalmazott peremfeltételek az F.1.2. függelékben találhatóak. A négyoldalas kockamodellhez képest csökkentek a hőmérsékletek, mivel itt az eddigi öt tárolós modellhez képest további két tárolóval bővült a modell, melyek közvetlenül a külső térrel, az űrrel vannak hőátviteli kapcsolatban, és nagymennyiségű hőveszteséget okoz az általuk kifelé sugárzott hő.

19. ábra: Hőmérséklet lefutások átlagértékekkel.

3.2.1.1. Legrosszabb és legjobb eset

A szélsőséges eseteket itt is megvizsgáltam. A leghidegebb esetben a beérkező sugárzások minimális értékével számoltam, illetve a minimálisan látott felülettel, tehát álló helyzetben, amikor a szoláris fluxus pontosan egy oldalt ér. Az árnyékos oldalon indulást szintén fontos megvizsgálni, azonban ennek következtében sem lesz alacsonyabb az elért minimális hőmérséklet, mint a beállást követően. Az 1-es oldal az, amelyet a Nap sugarai érnek, ennek a hőmérséklete gyorsan, nagy amplitúdóval változik, 80 °C-os a hőmérsékletkülönbség. Azonban szélsőértékek még éppen az FR-4 NYÁK lap működési hőmérséklet tartományán belül találhatóak.

20. ábra: Legrosszabb eset hőmérséklet lefutásai.

A legmelegebb esetből a hatoldalas kockahéj modellben is kétfélét vizsgáltam. Egyrészt a forgásmentes esetet, mikor a Nap sugarai pontosan három oldalt látnak, ekkor a legnagyobb összesen látott felület abban az esetben áll elő, amikor a sugárzás a térátlóval párhuzamosan éri az oldalakat, tehát $\sqrt{3}$ -szorosa az összfelület egy oldal felületének. A forgó modell esetében a forgás a térátló tengelye körül történik, így lesz átlagosan a legnagyobb látott felület. Mindkét esetben a maximális sugárzás értékekkel számoltam, illetve a belső, elektronikán disszipált hővel. Az eredmények összevetése az alábbi, 21. ábrán látható. Itt csupán az akkumulátor hőmérséklete jelenik már meg.

21. ábra: Hőmérséklet lefutások különböző forgatókönyvek szerint.

Látható, hogy itt az átlagos esetben az akkumulátor idejének jelentős részét 0°C alatt tölti, a minimum értékek mellett pedig ki sem mozdul a negatív tartományból.

A 21. ábrán úgy tűnik, mintha még nem állt volna be a hőmérséklet, azonban, ha egy nagyobb időintervallumot tekintünk (22. ábra), akkor látható, hogy az átlagos esetben végzett szimuláció eredményében a nagy kilengés már a beállást követően jelenik meg. Így a megtévesztő eredmény valószínűleg a numerika hibájából adódik. Annak érdekében, hogy ez ne befolyásolja az eredmények helyességét, a szimulációkat száz periódusra futtattam, így az eredmények kiértékelésekor a hibák az átlagolások következtében már nem játszanak jelentős szerepet.

22. ábra: Akkumulátor hőmérséklet több periódusra.

3.2.1.2. Ernyőzés hatása

A sugárzásvédő ernyő hatását ebben a modellben is vizsgáltam. Itt az első ernyő hatása jelentős, azonban a második ernyő már alig befolyásolja a hőmérsékletváltozás amplitúdóját, amely a 23. ábrán is látható. Hasonlóan a korábbi, 21. ábrához, itt is megjelenik az ernyőzetlen esetben a numerika hibája, így több periódus vizsgálata szükséges.

23. ábra: Ernyőzés hatása az F.2. függelék alapján meghatározott átlagos értékek mellett.

3.3. Részletes modell

Az előző modell bővítésével jutunk el a részletes modellhez. Ebben a modellben a hatoldalú, teljes kockahéj modell oldallapjai mellett megjelennek a belső FR-4 anyagú NYÁK lapok is, melyek elhelyezkedését a 24. ábrán láthatjuk. Itt nem elhanyagolható a hővezetés a NYÁK lap, illetve a rajta található akkumulátor között, valamint a belső NYÁK lapok és az oldallapok között.

24. ábra: A NYÁK lapok elhelyezkedése.

3.3.1. Hővezetés hatása az akkumulátor hőmérsékletére

Az akkumulátor két NYÁK lemez között helyezkedik el, a harmadik illetve a negyedik lemez között. Ennek rögzítése a NYÁK-okon egy rendkívül fontos feladat, mivel fellövéskor nagy mechanikai igénybevételeket kell kibírnia. Azonban a rögzítés miatt jelentős a fellépő hővezetés az akkumulátor és a két NYÁK lemez között, ezért úgy kellett a csatlakozás módját megoldani, hogy a lehető legkisebb hőveszteség keletkezzen az akkumulátoron. Így az itt megjelenő hővezetési ellenállás hatását vizsgáltam az akkumulátor hőmérsékletére, tíz mérési pontra. Ez alapján a különböző forgatókönyvek szerint végzett szimulációk a 25. ábrán látható eredményt adták. A különböző szimulációk peremfeltételei jelen esetben is az F.1.2. függelékben találhatóak.

25. ábra: A hővezetés hatása.

A szimulációk eredménye alapján a hővezetési ellenállás értékének jelentős növelésével az akkumulátor hőmérsékletének szélső értékei csak kis mértékben változnak. Így további megoldási lehetőségeket kell keresnünk, mint például a sugárzásvédő ernyők alkalmazása. Korábban már láttuk, hogy két ernyőnél több alkalmazása már csak kismértékű változásokat eredményez, így a továbbiakban két rétegű ernyőzés mellett vizsgáltam a hővezetés hatását.

26. ábra: Hővezetés hatása kétrétegű ernyőzés mellett. Az egyes trendek mellett látható a 25. ábra eredménye.

A szimulációk eredménye alapján jól látszik, hogy az akkumulátor hőmérsékletamplitúdója nem elhanyagolható mértékben lecsökken a hővezetési ellenállás növelésével, illetve, hogy kétrétegű ernyőzés esetén az akkumulátor hőmérsékletének minimuma egyre jobban közelíti a kritikus 0°C értéket. Így olyan megoldást kell találnunk az akkumulátor rögzítésére, amellyel teljesül majd ez a feltétel. Jelenlegi terveink szerint az akkumulátor 6-6 db. PEEK-1000 típusú távtartóval lesz rögzítve két NYÁK lap között, melynek előnye, hogy így nagy hővezetési ellenállással csatlakozik a lemezekhez, azonban megfelelő stabilitást is ad az akkumulátornak. A távtartó anyaga szélesebb hőmérséklettartományon belül alkalmazható, mint a műhold elektronikája, -50°C és 210 °C között, így ha az elektronika működési tartományára fókuszálva tervezzük meg az egyes elemek védelmét, a távtartó is biztosan megtartja szilárdsági jellemzőit [23].

3.3.2. Eredmények

A továbbiakban az eredményeket a választott távtartó illetve a kétrétegű ernyőzés figyelembe vételével mutatom be.

27. ábra: Átlagos értékekkel számított hőmérsékletek.

Az átlagos értékekkel vizsgált esetben az akkumulátor minimum hőmérséklete már 0°C körüli érték, azonban a külső oldalak hőmérséklete jelentős mértékben lecsökken 0°C alá. Az FR-4 lapokon található elektronika működési hőmérséklet tartománya lényegesen nagyobb, azonban ahhoz, hogy megfelelően működjön az oldallapokon található elektronika is, további vizsgálatokat és konstrukciós megoldásokat kell tenni. A 4. táblázat tartalmazza a teljes szimuláció alapján kapott átlagos, minimális és maximális értékeket.

	Akku	1-es oldal	2-es oldal	3-as oldal	4-es oldal	5-ös oldal	6-os oldal
T _{min} [K]	269,33	250,18	250,54	251,01	250,06	227,11	243,98
<i>T_{max}</i> [K]	291,47	298,95	300,43	298,49	300,02	294,19	284,55
T _{közép} [K]	278,25	281,10	281,54	281,22	281,49	273,18	269,37

4. táblázat: Jellemző hőmérséklet értékek.

3.3.2.1. Legrosszabb és legjobb esetek

Az alábbi, 28. ábrán látható az akkumulátor hőmérsékletének időbeli lefolyása a különböző esetekben.

28. ábra: Különböző esetek összevetése.

A MIN, azaz leghidegebb eset, amelyet vizsgáltam, igen alacsony akkumulátor hőmérsékletet ad, így a továbbiakban érdemes megvizsgálni, hogy ilyen átmeneti szélsőséges körülmények milyen hosszú ideig állhatnak fenn, hogy a negatív hőmérséklet tartományban ne tartózkodjon az akkumulátor. A legmelegebb esetet azért vizsgáltam, mivel a Li-ionos akkumulátor érzékeny a magas hőmérsékletre is, azonban az elérhető maximális hőmérséklet még a működési tartományon belül található, így ez nem okoz gondot.

Bár a külső oldallemezek szélsőségesebb körülményeknek vannak kitéve, így a rajtuk található elektronika élettartalma szempontjából létfontosságú megvizsgálni azok hőmérsékletét, érdemes megnézni a belső NYÁK lapok hőmérsékletét is, ez a 29. ábrán látható.

29. ábra: Belső NYÁK lapok hőmérséklete.

A legfelső illetve legalsó lap hőmérsékletének amplitúdója nagyobb, mint egy belső lemeznek, tehát itt is látszik a csillapítás hatása. Azonban minden NYÁK lap hőmérséklete a működési hőmérséklet tartományon belül oszcillál.

3.3.3. Összevetés

A kockahéj modell a részletes modellhez képest még sok elhanyagolást tartalmaz, mint a belső NYÁK lemezek, amelyek csillapító hatása jelentős az akkumulátor hőmérsékletingadozásában. Továbbá a részletes modell esetében már pontosabban lehet vizsgálni a különböző hővezetésű támaszelemek hatását, így a korábbihoz képest az akkumulátor hőmérséklet tartománya jelentősen leszűkíthető illetve megnövelhető. Ez látható a 30. ábrán.

30. ábra: Hatoldalas modellek összehasonlítása.

3.3.4. Validáció a végeselemes szimulációk alapján

A hőáramhálózatos modell validálása szükségszerű, egyrészt a végeselemes módszerrel, valamint a termokamrás illetve termovákuum-kamrás mérésekkel. Ez utóbbiak még nem fejeződtek be, így a rendelkezésemre álló mérési eredmények alapján a modell még nem validálható. Azonban a végeselemes szimuláció alapján már össze lehet hasonlítani az eredményeket, így vizsgálható a modell helyessége. Az összehasonlítás alapját a részletes modell képzi, azonban a rendelkezésemre álló végeselemes szimulációk eredményei még korábbi elrendezés alapján adódtak, így ezekhez igazítottam a saját modellem. A végeselemes modellben az akkumulátor és a NYÁK lapok között 4-4 db műanyag távtartó található, amelyek 1 mm vastagságúak, az akkumulátor oldalán 9 mm², a NYÁK lapokon pedig 12 mm² felületi

csatlakozással. Az összehasonlítás eredményei a 31. ábrán láthatóak. A végeselemes modell eredményei Petróczi Balázs munkájából származnak, amely kötődik a TDK dolgozatához [24].

31. ábra: A hőáramhálózatos és a végeselemes módszer összehasonlítása.

Egyértelműen látható a különbség a két modell között, azonban az eltérés kevesebb, mint 5 °C. Így belátható, hogy a továbbiakban a modell pontosságán kell dolgozni úgy, hogy a végeselemes szimulációkkal összeegyeztethetőek legyenek az eredmények.

4. Összefoglalás

Az elmúlt két évben az egyetemen elindult a SMOG-1 PocketQube osztályú műhold építése. A projekt rendkívül összetett, így a fejlesztésben számos villamosmérnök illetve gépészmérnök hallgató és oktató is részt vesz. Az én feladatom a műhold hőáramhálózatos modelljének elkészítése volt, melynek középpontjában az akkumulátor hőmérsékletének monitorozása állt. Az első modell öttárolós volt, amelynek az egyszerű felépítés ellenére nagy hátránya volt, hogy a hőtani folyamatok követését csak bonyolult számításokkal lehetett elvégezni. Továbbá a modell hibája volt, hogy mivel csak négy oldallappal modelleztem, az űr felé kisugárzott, illetve a beérkező hő lényegesen kisebb felületen történt. Ez utóbbit a kockahéj modell megalkotásával már kiküszöböltem. A részletes modell további pontosítást eredményezett, ahol a főbb elemek már mind megjelennek, azonban ez a modell még mindig nem elegendő pontosságú ahhoz, hogy pontosan követhetőek legyenek a hőtani folyamatok. Az egyre részletesebb modellekkel végzett szimulációkkal egyre pontosabb tartományon belül vizsgálhatjuk az egyes elemek hőmérsékletét, így a konstrukciós megoldásokat is egyre pontosabban lehet tervezni. A vizsgálatok során az akkumulátor fagypont felett tartása állt a fókuszpontban, mivel annak van a legszűkebb üzemelési hőmérséklet tartománya, már 0 °C alatt meghibásodhat. Így a fagyástól való megvédése érdekében a szimulációs eredmények alapján különböző megoldási lehetőségek hatását vizsgáltam. Az űrben található vákuum miatt a hővezetésből illetve hősugárzásból adódó veszteségek értékét kell jelentősen lecsökkenteni a kihűlés elkerülése érdekében, így sugárzásvédő ernyőket kell alkalmazni, illetve a NYÁK lemezek közötti rögzítéshez megfelelő anyagú tartót kell alkalmazni. A munkám azonban nem ért véget, a validációs mérések eredményei alapján a modell tovább fejleszthető, a sok kezdeti elhanyagolást, amelyek a biztonság irányába történő tévedést engedték korábban, az egyre részletesebb modellek készítésekor már figyelembe kell venni.

5. További feladatok

Az első és legfontosabb továbblépési pont a modellek validálása. Erre a jelenleg futó termokamrás, illetve termovákuum-kamrás mérések szolgáltatnak majd eredményeket. Mivel a termovákuum-kamrás mérés egy olyan átfogó vizsgálat, amely elvégzésével az űrbeli környezetben esetlegesen adódó problémákat felderíthetjük, illetve a modellek helyességét is validálhatjuk, így ezzel jelentősen lecsökkenthetőek a kockázatok. Az egyre részletesebb modellek megalkotása miatt a hőáramhálózatos modellt folyamatosan ellenőrizni kell a végeselemes szimulációk eredményei alapján, így ez egy időről időre felmerülő feladat.

Mivel az eddig alkalmazott modellek sok egyszerűsítést, elhanyagolást tartalmaznak, így a továbbiakban egyre részletesebb vizsgálatokat kell majd végezni. Eddigiekben a főszerepet a fagyás elleni védelem játszotta, azonban fontos megvizsgálni, hogy a nagy hőfelszabadulással járó elektronika hűtése megfelelő-e és így a hő megfelelően eljut-e a fűtendő elemek felé, így nem melegszenek túl ezek az elemek. Finomításokkal még pontosabban meg lehet határozni azt a tartományt, amelyen belül marad majd az egyes elemek hőmérséklete a működés során.

5.1. Fordulatszám hatása a kivehető teljesítményre

A napelemekből kivehető teljesítmény függ a cellahőmérséklettől, a megvilágítás szögétől, illetve a terhelés nagyságától. A műhold működése, illetve az akkumulátor töltése közben változó terhelés jelenik meg a rendszerben, illetve a forgás miatt a cellák megvilágítási szöge is folyton változik, így az energiatermelést optimalizálni kell, a cellákat a maximális teljesítményű pontban kell járatni. Erre maximális munkapont követés módszert (Maximum Power Point Tracking (MPPT)) alkalmazunk, amellyel maximalizálható a napelemekből kivehető teljesítmény, változó paraméterek mellett. A munkapont követés módszere azonban nem tudja azonnal lekövetni a változásokat, lassabban áll be az új munkapont. Így minél rövidebb idő alatt következik be változás, annál kisebb hatásfoka lesz az energia termelésének. Emiatt a napelemek hatásfoka csökken, több lesz a hőként hasznosuló aránya a beérkező sugárzásnak. Mivel a műhold forgásának sebességét, illetve tengelyét nem tudjuk megállapítani, azt a dobószerkezetből való indítás határozza meg, ezért szükséges megvizsgálni, hogy a napelemek által termelt energia mennyisége milyen mértékben függ a fordulatszámtól. Ehhez a méréseket Herman Tibor végezte [2], a továbbiakban az eredményei alapján vizsgálom majd a forgás hatását a műhold hőmérsékletére. Mivel csökkenő cellahatásfok mellett az elnyelt hő mennyisége nő, így ez a műhold hőmérlegét pozitív irányba fogja elmozdítani.

6. Köszönetnyilvánítás

Szeretnék köszönetet mondani konzulenseimnek, Józsa Viktornak és Kovács Róbertnek, akik rengeteg szakmai tanáccsal láttak el, tudásukkal és tapasztalatukkal segítettek munkám során. Köszönöm dr. Gschwindt Andrásnak, hogy részese lehetek annak a projektnek, amely által az egyetem egy újabb műholddal lesz gazdagabb. Köszönettel tartozok a tervező csapatnak, akik tudásukkal segítették munkámat, tanácsokkal láttak el, és hogy mindig ilyen jó hangulatban telt a közös munka.

7. Irodalomjegyzék

- [1] "PocketQube." [Online]. Elérhető: https://en.wikipedia.org/wiki/PocketQube, 2016.10.25.
- [2] Herman Tibor, "A SMOG-1 PocketQube elsődleges energiaellátó rendszere," Diplomaterv, Témavezető: Dudás Levente, Budapesti Műszaki és Gazdaságtudományi Egyetem, 2015.
- [3] Dudás Levente, "The Spectrum Monitoring System of Smog-1 Satellite," in MAREW 2015 konferencia.
- [4] Kristóf Timur, "A SMOG-1 PocketQube műhold redundáns fedélzeti számítógépének hardver és szoftver fejlesztése", TDK dolgozat, Konzulens: Dudás Levente, Budapesti Műszaki és Gazdaságtudományi Egyetem, 2015.
- [5] Géczy Gábor, "SMOG-1 Másodlagos Energiaellátó Rendszere " MSc diplomaterv, Témavezető: Dudás Levente, Budapesti Műszaki és Gazdaságtudományi Egyetem, 2015.
- [6] "New world record for solar cell efficiency at 46% French-German cooperation confirms competitive advantage of European photovoltaic industry," 2014. [Online]. Elérhető: https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/new-world-record-for-solar-cell-efficiency-at-46-percent, 2016.10.25.
- [7] "Low Earth Orbit," [Online]. Elérhető: https://en.wikipedia.org/wiki/Low_Earth_orbit, 2016.10.25.
- [8] T. Elter, "Tudja-e, hogy mi a repülőgépes magassági világrekord?," [Online]. Elérhető: http://www.origo.hu/tudomany/20160603-sugarhajtasu-repules-gazturbinakompresszor-magassagi-felderito-szovjetunio-mig-25-magassagi.html, 2016.10.25.
- [9] "Távközlési és műholdas lexikon," [Online]. Elérhető: http://www.frekvencia.hu/lexikon/l/leo.htm, 2016.10.25.
- [10] "The 3K Cosmic Background Radiation," [Online]. Elérhető: http://hyperphysics.phyastr.gsu.edu/hbase/bkg3k.html, 2016.10.25.
- [11] C. R. Anderson, "An Objectivist Individualist blog," [Online]. Elérhető: https://objectivistindividualist.blogspot.hu/2013/02/infrared-absorbing-gases-andearths.html, 2016.10.25.
- [12] "Space Exploration beta," 2015. [Online]. Elérhető: http://space.stackexchange.com/questions/7827/whats-the-typical-temperature-of-asatellite-orbiting-the-earth, 2016.10.25.

- [13] L. Jacques, "Thermal Design of the Oufti-1 nanosatellie," 2009.
- [14] T. W. Flatley and W. A. Moore, "An Earth Albedo Model," 1994.
- [15] Gróf Gyula, "Hőközlés jegyzet," 1999.
- [16] Környei Tamás, Hőátvitel, Műegyetemi Kiadó (Budapest), 1999.
- [17] L. D. Landau and E. M. Lifshitz, Physical Kinetics, Course of Theoretical Physics, Vol.10, p76-82, 1981.
- [18] dr. Bihari Péter, Both Soma, Dobai Attila, and Györke Gábor, "Segédlet a Hőtan tárgycsoport tantárgyaihoz," 2015.
- [19] "Beépített köz.diff. megoldók." [Online]. Elérhető: http://nimbus.elte.hu/~hagi/segedanyag/Matlab_ora/felev2/orak_anyaga/gyak09_kde4. pdf, 2016.10.25.
- [20] "MathWorks File Exchange." [Online]. Elérhető: https://www.mathworks.com/matlabcentral/fileexchange/5664-view-factors, 2016.10.25.
- [21] J. Rieth, "Hősugárzás," Anyagvilág-Háttérismeret. [Online]. Elérhető: http://www.rieth.hu/Vilagom/41_Hosugarzas.htm, 2016.10.25.
- [22] Dr. Kovács E., "Komputergrafika--Matematikai Alapok." [Online]. Elérhető: http://www.tankonyvtar.hu/hu/tartalom/tamop425/0046_komputergrafika_matematikai _alapok/ch03s02.html, 2016.10.25.
- [23] "Ketron 1000 PEEK catalogue," 2014. [Online]. Elérhető: http://www.quadrantplastics.com/fileadmin/quadrant/documents/QEPP/EU/Product_D ata_Sheets_PDF/AEP/Ketron_1000_PEEK_PDS_E_25042014.pdf, 2016.10.25.
- [24] Petróczi Balázs, "A SMOG-1 nanoműhold végeselemes hőtechnikai modellezése" TDK dolgozat, Konzulens: Józsa Viktor, Budapesti Műszaki és Gazdaságtudományi Egyetem, 2016.

Függelék

F1. Peremfeltételek

A táblázatban található MAX1 illetve MAX2 esetek csak a forgásban különböznek egymástól. Ezen kívül az átlagos értékek az éves átlagos értéket jelölik.

F1.1. Négyoldalas modell

Négyoldalas modell	Átlag eset (ÁTLAG)	Minimum (MIN)	Maximum (MAX1/MAX2)
Indítás	Napos oldal	Árnyék	Napos oldal
Forgás tengelye	A kocka hiányzó oldalának normálvektora	Nincs forgás	Nincs forgás/ Térátló tengelyű
Napsugárzás [W/m ²]	1367	1322	1414
Albedo sugárzás [W/m ²]	30%	10%	50%
Infra sugárzás [W/m ²]	239	212	263

F1. táblázat [13],[14].

F.1.2. Hatoldalas modellek

Hatoldalas modellek	Átlag eset (ÁTLAG)	Minimum (MIN)	Maximum (MAX1/MAX2)
Indítás	Napos oldal	Árnyék	Napos oldal
Forgás tengelye	Kiszámított 25°dőlésszög	Nincs forgás	Nincs forgás/ Térátló tengelyű
Napsugárzás [W/m ²]	1367	1322	1414
Albedo sugárzás [W/m ²]	30%	10%	50%
Infra sugárzás [W/m ²]	239	212	263

F2. táblázat[13], [14]